Optimal conditions for the use of polyrotaxane as a cross-linker in preparing elastomers with high toughnesses, mechanical, and UV-resistance properties

Optimal conditions for the use of polyrotaxane as a cross-linker in preparing elastomers with high toughnesses

Conceptual diagram of a polymer network using polyrotaxane as a cross-linking agent

Announcements

Advertisement

  • This study presented the workflow of machine learning-guided optimization of Pd-immobilized porous polymer catalysts. Two independent variables (DVB and 1-decanol content) were involved in polymerization to maximize TOF as target variable in Suzuki–Miyaura coupling reaction. Bayesian optimization was applied for predictive modeling, and the optimized conditions were experimentally validated in subsequent iterations. By applying this workflow, the catalytic activity of immobilized polymer porous catalysts was successfully optimized using machine learning.

    • Xincheng Zhou
    • Hikaru Matsumoto
    • Yoshiko Miura
    Original Article
  • The crystalline surface using two photochromic diarylethenes was prepared to mimic a termite wing showing dual wettability. The surface is useful to correct small water droplets in the air. However, the crystalline system was not applicable for the use because crystalline structures on the surface melt under daylight. We copied the rough structure of crystalline film to a stable polycycloolefin polymer (Zeonex 480) surface. The copied surface showed the dual wettability as same as that of the crystalline surface.

    • Yuki Hashimoto
    • Amane Hase
    • Kingo Uchida
    Original Article
  • We have investigated the self-assembly kinetics of silica nanoparticles (SNPs) into the polymer-like structure by time-resolved small-angle X-ray scattering (SAXS). The analysis of the SAXS data with a kinetic model revealed that the SNPs undergo self-assembly in a process akin to the step-growth polymerization of bifunctional monomers. This study offers a facile strategy to construct polymer-like structures from isotropic spherical nanoparticles.

    • Tatsuki Oishi
    • Ayae Sugawara-Narutaki
    • Rintaro Takahashi
    Rapid CommunicationOpen Access
  • The relationships between the macroscopic mechanical properties and lamellar structures of polyamide 11 obtained from different heat treatments were investigated. From the tensile tests, the maximum stress and strain at necking increase with the heat treatment temperature. WAXS measurements indicated that different crystalline phases formed depending on the heat treatment conditions. SAXS revealed that the lamellar thickness and long period increased with the heat treatment temperature. Based on these results, we elucidated that the macroscopic mechanical properties correlate with the lamellar thickness and long period.

    • Toyoshi Yoshida
    • Mei Touji
    • Yoshihisa Kaneko
    Original Article
  • We explored the feasibility of Tetra-PEG gel, a controllable hydrogel, as a new biomaterial to develop a coating agent for post-ESD ulcers. We examined the optimal conditions for hydrogel application and developed a specialized catheter, then investigated its properties. Ultimately, we successfully used the optimized hydrogel and device to cover post-ESD ulcers in the porcine stomach. Further optimization of the hydrogel and ongoing research through animal experiments are expected to deepen our understanding of the material’s effects on ulcer healing and contribute to its clinical applications.

    • Rina Cho
    • Hiroyuki Kamata
    • Mitsuhiro Fujishiro
    Original ArticleOpen Access
  • Triptycene-containing polymers featuring a rigid propeller-shaped structure have attracted attention for a wide range of potential applications including guest recognition, material transports, separations, catalysis, and organic electronics. Herein, with a thorough literature survey, we present the synthesis of the various types of triptycenes that provide components for functional polymers. We particularly focus on triptycene-containing polymers and two-dimensional assemblies based on the space-filling design that uses nested packing. Future perspectives on the functionalities brought about by the design of triptycene-containing polymers and molecular assemblies are also discussed.

    • Fumitaka Ishiwari
    • Yoshiaki Shoji
    • Takanori Fukushima
    ReviewOpen Access
  • The effects of an organic monoglyceride (OMG) plasticizer on the crystallization of the PLLA/PDLA (50/50) blend were investigated by examining the isothermal crystallization of the blend with different contents of OMG (1–5 wt%) using POM, DSC, and time-resolved WAXD. It was found that the increase of the OMG content promoted the exclusive formation of stereocomplex crystallites and enhanced its crystallinity while suppressing the formation of homocrystals.

    • Neimatallah Hosni Mohammed Mahmoud
    • Hideaki Takagi
    • Shinichi Sakurai
    Original Article
  • The thiol-Michael polyaddition of three dialkynyl monomers with several dithiols proceeded using triethylamine as the catalyst to give unsaturated poly(ester-thioether)s with the expected structures (Mn, 2.4 × 103 to 22.6 × 103; molecular dispersity index [Mw/Mn], 1.26–2.00). All of the poly(ester-thioester)s had single glass-transition temperature values between −27 and 49 °C. While the rigid main chains improved the glass transition temperature, all of the poly(ester-thioester)s showed apparent enzymatic hydrolysis by lipase but low biodegradability in biodegradation tests using activated sludge.

    • Katsuhisa Yano
    • Akinori Takasu
    • Hiroshi Eguchi
    Original ArticleOpen Access